|
SSJ
3.3.1
Stochastic Simulation in Java
|
Partial variance estimator. More...
Public Member Functions | |
| PartialVarianceEstimator (MonteCarloModelDoubleRQMC model, double approxMean, List< CoordinateSet > coordSets) | |
| MonteCarloModelDoubleRQMC | getModel () |
| void | setModel (MonteCarloModelDoubleRQMC model, double approxMean) |
| Sets the model whose partial variances are to be estimated. More... | |
| List< CoordinateSet > | getCoordinateSets () |
| Returns the list of coordinate sets under consideration. | |
| void | setCoordinateSets (List< CoordinateSet > coordSets) |
Set the coordinate sets to consider to coordSets. | |
| double | getApproximateMean () |
| void | simulate (RandomStream stream) |
| Simulates the estimator once. More... | |
| double [] | getPerformance () |
| Recovers and returns the realization of the performance measure, of type E. | |
| int | getDimension () |
| Returns the number of input dimensions. | |
| String | toString () |
| Returns a description of the partial variance estimator. | |
Protected Attributes | |
| MonteCarloModelDoubleRQMC | model |
| double | approxMean |
| List< CoordinateSet > | coordSets |
| CoordinateSet | noCoordinate |
| CoordinateSet | allCoordinates |
| double [] | vars |
Partial variance estimator.
Estimates partial variances of a model with respect to multiple coordinate sets.
Reference: Monte Carlo estimators for small sensitivity indices I. M. Sobol' and E. E. Myshetskaya Monte Carlo Methods Appl. Vol. 13 No. 5-6 (2007), pp. 455-465
| void setModel | ( | MonteCarloModelDoubleRQMC | model, |
| double | approxMean | ||
| ) |
Sets the model whose partial variances are to be estimated.
Best precision is achieved when the mean value of the model is close to approxMean.
| void simulate | ( | RandomStream | stream | ) |
Simulates the estimator once.
Returns vars such that:
vars.length is coordSets.size() + 2. vars[nSets] contains the correction to the approximate mean. vars[nSets+1] contains the square of the above correction. Implements MonteCarloModel< E >.
1.8.14