| LatNet Builder Manual 2.1.3-6
    Software Package for Constructing Highly Uniform Point Sets | 
Tools for streaming and poor man's factorization. More...
| Namespaces | |
| namespace | LatBuilder | 
| LatBuilder namespace. | |
| Functions | |
| template<typename T> | |
| T | LatBuilder::intPow (T base, unsigned long exponent) | 
| Integer exponentiation. | |
| Polynomial | LatBuilder::PolynomialFromInt (uInteger x) | 
| convert Integer to polynomial | |
| uInteger | LatBuilder::IndexOfPolynomial (Polynomial P) | 
| convert polynomial to integer | |
| template<typename T> | |
| T | LatBuilder::modularPow (T base, uInteger exponent, T modulus) | 
| Modular exponentiation. | |
| std::vector< uInteger > | LatBuilder::primeFactors (uInteger n, bool raise=false) | 
| Prime factorization using the naive "trial division" algorithm. | |
| std::map< uInteger, uInteger > | LatBuilder::primeFactorsMap (uInteger n) | 
| Prime factorization using the naive "trial division" algorithm. | |
| std::pair< long long, long long > | LatBuilder::egcd (uInteger a, uInteger b) | 
| Extended Euclidian algorithm. | |
| uInteger | LatBuilder::Vm (const Polynomial &h, const Polynomial &P) | 
| computes The integer \(2^{\deg(P)}\nu_m(\frac{h} {p}) \) where \(\nu_{m}\) is the mapping \(\nu_{m} : \mathbb{L}_{2} \rightarrow \mathbb{R} \) | |
| uInteger | LatBuilder::log2Int (unsigned int n) | 
| std::string | LatBuilder::getDefaultPolynomial (unsigned int degree) | 
| Returns a default polynomial of degree degree. | |
| std::string | LatBuilder::to_string (LatticeType LT) | 
Tools for streaming and poor man's factorization.