LatNet Builder Manual
2.0.1-11
Software Package for Constructing Highly Uniform Point Sets
|
One-dimensional merit function for the \(\textbf{R}\) discrepancy. More...
#include <RPLR.h>
Public Types | |
typedef Real | value_type |
typedef Real | result_type |
Public Member Functions | |
RPLR () | |
Constructor. | |
bool | symmetric () const |
result_type | operator() (const value_type &x, Polynomial modulus) const |
Returns the one-dimensional function evaluated at x . | |
result_type | operator() (const value_type &x, unsigned long modulus) const |
std::string | name () const |
Static Public Member Functions | |
static constexpr Compress | suggestedCompression () |
One-dimensional merit function for the \(\textbf{R}\) discrepancy.
This merit function is defined as
\[ \omega(x) = \left\{ \begin{array}{ll} \frac{1}{2}i_{0} & \mbox{if } x = \sum_{i=i_{0}}^{\infty} \xi_{i}2^{-i},\quad 1 \leq i_{0} \leq m, \xi_{i_{0}} \neq 0 \\ 1+\frac{1}{2}m & \text{otherwise } \end{array} \right. \]
where \(m = \deg(P(z))\), with \(P(z)\) the modulus of the polynomial lattice