LatNet Builder Manual  2.0.1-11
Software Package for Constructing Highly Uniform Point Sets
LatBuilder::Functor::PAlphaPLR Class Reference

One-dimensional merit function for the \(\mathcal{P}_{\alpha,PLR}\) discrepancy. More...

#include <PAlphaPLR.h>

Public Types

typedef Real value_type
 
typedef Real result_type
 

Public Member Functions

 PAlphaPLR (unsigned int alpha)
 Constructor. More...
 
unsigned int alpha () const
 
bool symmetric () const
 
result_type operator() (const value_type &x, Polynomial n=Polynomial(0)) const
 Returns the one-dimensional function evaluated at x.
 
result_type operator() (const value_type &x, unsigned long) const
 
std::string name () const
 

Static Public Member Functions

static constexpr Compress suggestedCompression ()
 

Detailed Description

One-dimensional merit function for the \(\mathcal{P}_{\alpha,PLR}\) discrepancy.

This merit function is defined as

\[ \omega(x) = \mu(\alpha) - 2^{(1+ \lfloor \log_{2}(x_{i,j}) \rfloor)(\alpha-1)}(\mu(\alpha)+1) \]

for \(\alpha >1\)

Constructor & Destructor Documentation

◆ PAlphaPLR()

LatBuilder::Functor::PAlphaPLR::PAlphaPLR ( unsigned int  alpha)
inline

Constructor.

Parameters
alphaValue of \(\alpha\).

The documentation for this class was generated from the following file: