LatNet Builder Manual
2.0.1-11
Software Package for Constructing Highly Uniform Point Sets
|
Coordinate-uniform projection-dependent figure of merit. More...
#include <CoordUniform.h>
Inherits LatBuilder::ProjDepMerit::Base< CoordUniform< KERNEL > >.
Public Member Functions | |
CoordUniform (KERNEL kernel=KERNEL()) | |
Constructor. More... | |
bool | symmetric () const |
const KERNEL & | kernel () const |
std::string | name () const |
Real | power () const |
template<LatticeType LR, EmbeddingType ET, Compress COMPRESS, PerLevelOrder PLO> | |
Evaluator< CoordUniform, LR, ET, COMPRESS, PLO > | evaluator (Storage< LR, ET, COMPRESS, PLO > storage) const |
Creates an evaluator for the projection-dependent figure of merit. | |
Public Member Functions inherited from LatBuilder::ProjDepMerit::Base< CoordUniform< KERNEL > > | |
Storage< LR, ET, COMPRESS, PLO >::MeritValue | operator() (const Storage< LR, ET, COMPRESS, PLO > &storage, const LatDef< LR, ET > &lat, const LatticeTester::Coordinates &projection) const |
Computes the value of the figure of merit of lattice lat for projection projection . | |
std::string | name () const |
Returns the name of the figure of merit. | |
bool | symmetric () const |
Returns true if the value of the figure of merit is invariant under a reflection of the generating vector \(\boldsymbol a=(a_1, \dots, a_s)\) along any axis such that \(a_j \mapsto n - a_j\), where \(n\) is the number of points in the lattice point set. | |
Evaluator< CoordUniform< KERNEL >, LR, ET, COMPRESS, PLO > | evaluator (const Storage< LR, ET, COMPRESS, PLO > &storage) const |
Creates an evaluator for the projection-dependent figure of merit. | |
CoordUniform< KERNEL > & | derived () |
const CoordUniform< KERNEL > & | derived () const |
Real | power () const |
Static Public Member Functions | |
static constexpr Compress | suggestedCompression () |
Coordinate-uniform projection-dependent figure of merit.
This type of projection-dependent figure of merit is base on a kernel \(\omega\) such that, for number of points \(n\) and generating vector \(\boldsymbol a = (a_1, \dots, a_s)\), the merit value for a projection on coordinates in \(\mathfrak u\) is
\[ \frac1n \sum_{i=0}^{n-1} \prod_{j \in \mathfrak u} \omega((i a_j / n) \bmod 1) \]
KERNEL | Kernel \(\omega\). |
|
inline |
Constructor.
kernel | Kernel \(\omega\). |