| 
    LatNet Builder Manual 2.1.3-6
    
   Software Package for Constructing Highly Uniform Point Sets 
   | 
 
Coordinate-uniform projection-dependent figure of merit. More...
#include <CoordUniform.h>
Inherits LatBuilder::ProjDepMerit::Base< CoordUniform< KERNEL > >.
Public Member Functions | |
| CoordUniform (KERNEL kernel=KERNEL()) | |
| Constructor.   | |
| bool | symmetric () const | 
| const KERNEL & | kernel () const | 
| std::string | name () const | 
| Real | power () const | 
| template<LatticeType LR, EmbeddingType ET, Compress COMPRESS, PerLevelOrder PLO> | |
| Evaluator< CoordUniform, LR, ET, COMPRESS, PLO > | evaluator (Storage< LR, ET, COMPRESS, PLO > storage) const | 
| Creates an evaluator for the projection-dependent figure of merit.  | |
| Public Member Functions inherited from LatBuilder::ProjDepMerit::Base< CoordUniform< KERNEL > > | |
| Storage< LR, ET, COMPRESS, PLO >::MeritValue | operator() (const Storage< LR, ET, COMPRESS, PLO > &storage, const LatDef< LR, ET > &lat, const LatticeTester::Coordinates &projection) const | 
Computes the value of the figure of merit of lattice lat for projection projection.  | |
| std::string | name () const | 
| Returns the name of the figure of merit.  | |
| bool | symmetric () const | 
Returns true if the value of the figure of merit is invariant under a reflection of the generating vector \(\boldsymbol a=(a_1, \dots, a_s)\) along any axis such that \(a_j \mapsto n - a_j\), where \(n\) is the number of points in the lattice point set.  | |
| Evaluator< CoordUniform< KERNEL >, LR, ET, COMPRESS, PLO > | evaluator (const Storage< LR, ET, COMPRESS, PLO > &storage) const | 
| Creates an evaluator for the projection-dependent figure of merit.  | |
| CoordUniform< KERNEL > & | derived () | 
| Real | power () const | 
Static Public Member Functions | |
| static constexpr Compress | suggestedCompression () | 
Coordinate-uniform projection-dependent figure of merit.
This type of projection-dependent figure of merit is base on a kernel \(\omega\) such that, for number of points \(n\) and generating vector \(\boldsymbol a = (a_1, \dots, a_s)\), the merit value for a projection on coordinates in \(\mathfrak u\) is
\[ \frac1n \sum_{i=0}^{n-1} \prod_{j \in \mathfrak u} \omega((i a_j / n) \bmod 1) \]
| KERNEL | Kernel \(\omega\). | 
      
  | 
  inline | 
Constructor.
| kernel | Kernel \(\omega\). | 
References CoordUniform().
Referenced by CoordUniform().