LatNet Builder Manual 2.1.3-6
Software Package for Constructing Highly Uniform Point Sets
Loading...
Searching...
No Matches
LatBuilder::Functor::ICAlpha Class Reference

One-dimensional merit function for the interlaced \(\mathcal B_{\alpha, d, \gamma}\) discrepancy in base 2 [rGOD15c]. More...

#include <ICAlpha.h>

Public Types

typedef Real value_type
typedef Real result_type

Public Member Functions

 ICAlpha (unsigned int alpha, unsigned int interlacingFactor)
 Constructor.
unsigned int alpha () const
unsigned int interlacingFactor () const
bool symmetric () const
template<typename MODULUS>
result_type operator() (const value_type &x, MODULUS n=0) const
 Returns the one-dimensional function evaluated at x.
std::string name () const

Static Public Member Functions

static constexpr Compress suggestedCompression ()

Detailed Description

One-dimensional merit function for the interlaced \(\mathcal B_{\alpha, d, \gamma}\) discrepancy in base 2 [rGOD15c].

This merit function is defined as:

\[ \phi_{\alpha, d}(x) = \frac{1 - 2^{2 \min(\alpha, d) \lfloor \log_2(x) \rfloor} (2^{2 \min(\alpha, d) + 1} -1)}{2^{\alpha} (2^{2 \min(\alpha, d)} -1) } \]

with \( \min(\alpha, d) > 1 \) where we set \(2^{\lfloor \log_2(0) \rfloor} = 0\).

Constructor & Destructor Documentation

◆ ICAlpha()

LatBuilder::Functor::ICAlpha::ICAlpha ( unsigned int alpha,
unsigned int interlacingFactor )
inline

Constructor.

Parameters
alphaValue of \(\alpha\).
interlacingFactorValue of \(d\).

References LatBuilder::intPow().


The documentation for this class was generated from the following file:
  • include/latbuilder/Functor/ICAlpha.h