Lattice Tester Guide  1.0-9
Software Package For Testing The Uniformity Of Integral Lattices In The Real Space
Bibliography
[1]

L. Afflerbach and H. Grothe. Calculation of Minkowski-reduced lattice bases. Computing, 35:269–276, 1985.

[2]

L. Afflerbach and H. Grothe. Calculation of Minkowski-reduced lattice bases. Computing, 35:269–276, 1985.

[3]

W. A. Beyer, R. B. Roof, and D. Williamson. The lattice structure of multiplicative congruential pseudo-random vectors. Mathematics of Computation, 25(114):345–363, 1971.

[4]

J. H. Conway and N. J. A. Sloane. Sphere Packings, Lattices and Groups. Grundlehren der Mathematischen Wissenschaften 290. Springer-Verlag, New York, 3rd edition, 1999.

[5]

R. Couture and P. L'Ecuyer. Orbits and lattices for linear random number generators with composite moduli. Mathematics of Computation, 65(213):189–201, 1996.

[6]

U. Dieter. How to calculate shortest vectors in a lattice. Mathematics of Computation, 29(131):827–833, 1975.

[7]

U. Fincke and M. Pohst. Improved methods for calculating vectors of short length in a lattice, including a complexity analysis. Mathematics of Computation, 44:463–471, 1985.

[8]

G. H. Golub and Ch. F. Van Loan. Matrix Computations. John Hopkins University Press, Baltimore, second edition, 1989.

[9]

H. Grothe. Matrixgeneratoren zur Erzeugung Gleichverteilter Pseudozufallsvektoren. Dissertation (thesis), Tech. Hochschule Darmstadt, Germany, 1988.

[10]

S. Joe and I. H. Sloan. On computing the lattice rule criterion R. Mathematics of Computation, 59:557–568, 1992.

[11]

D. E. Knuth. The Art of Computer Programming, Volume 2: Seminumerical Algorithms. Addison-Wesley, Reading, MA, second edition, 1981.

[12]

D. E. Knuth. The Art of Computer Programming, Volume 2: Seminumerical Algorithms. Addison-Wesley, Reading, MA, third edition, 1998.

[13]

P. L'Ecuyer and R. Couture. An implementation of the lattice and spectral tests for multiple recursive linear random number generators. INFORMS Journal on Computing, 9(2):206–217, 1997.

[14]

P. L'Ecuyer and D. Munger. On figures of merit for randomly-shifted lattice rules. In H. Wozniakowski and L. Plaskota, editors, Monte Carlo and Quasi-Monte Carlo Methods 2010, pages 133–159, Berlin, 2012. Springer-Verlag.

[15]

P. L'Ecuyer. Good parameters and implementations for combined multiple recursive random number generators. Operations Research, 47(1):159–164, 1999.

[16]

P. L'Ecuyer. Tables of maximally equidistributed combined LFSR generators. Mathematics of Computation, 68(225):261–269, 1999.

[17]

A. K. Lenstra, H. W. Lenstra, and L. Lovász. Factoring polynomials with rational coefficients. Math. Ann., 261:515–534, 1982.

[18]

G. Marsaglia. Random numbers fall mainly in the planes. Proceedings of the National Academy of Sciences of the United States of America, 60:25–28, 1968.

[19]

Phong Q. Nguyen. Hermite constants and lattice algorithms. In Phong Q. Nguyen and Brigitte Vallée, editors, The LLL Algorithm: Survey and Applications, pages 19–69. Springer Verlag, Berlin, Heidelberg, 2010.

[20]

H. Niederreiter. Random Number Generation and Quasi-Monte Carlo Methods, volume 63 of SIAM CBMS-NSF Reg. Conf. Series in Applied Mathematics. SIAM, 1992.

[21]

M. Pohst. On the computation of lattice vectors of minimal length, successive minima and reduced bases with applications. ACM SIGSAM Bulletin, 15:37–44, 1981.

[22]

C. P. Schnorr and M. Euchner. Lattice basis reduction: Improved practical algorithms and solving subset sum problems. In L. Budach, editor, Fundamentals of Computation Theory: 8th International Conference, pages 68–85, Berlin, Heidelberg, 1991. Springer-Verlag.

[23]

C. P. Schnorr. A hierarchy of polynomial time lattice basis reduction algorithms. Theoretical Computer Science, 53(2):201–224, 1987.

[24]

V. Sinescu and S. Joe. Good lattice rules with a composite number of points based on the product weighted star discrepancy. In A. Keller, S. Heinrich, and H. Niederreiter, editors, Monte Carlo and Quasi-Monte Carlo Methods 2006, pages 645–658. Springer, 2008.

[25]

I. H. Sloan and S. Joe. Lattice methods for multiple integration. Oxford Science Publications. The Clarendon Press Oxford University Press, New York, 1994.