LatNet Builder Manual  2.0.1-11
Software Package for Constructing Highly Uniform Point Sets
tutorial/MeritSeqCoordUniform.cc

This example shows how to instantiate a sequence of merit values computed using a specialized coordinate-uniform algorithm.

// This file is part of LatNet Builder.
//
// Copyright (C) 2012-2018 Pierre L'Ecuyer and Universite de Montreal
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "latbuilder/CoordUniformFigureOfMerit.h"
#include "latticetester/ProductWeights.h"
#include "latbuilder/Kernel/PAlpha.h"
#include "latbuilder/Kernel/PAlphaPLR.h"
#include "latbuilder/Accumulator.h"
#include "latbuilder/Storage.h"
#include "latbuilder/MeritFilterList.h"
#include "latbuilder/MeritCombiner.h"
#include "latbuilder/MeritSeq/CoordUniformCBC.h"
#include "latbuilder/MeritSeq/CoordUniformInnerProd.h"
#include "latbuilder/GenSeq/GeneratingValues.h"
#include "latbuilder/GenSeq/Creator.h"
#include "latbuilder/TextStream.h"
#include "Path.h"
#include <iostream>
#include <limits>
using namespace LatBuilder;
using TextStream::operator<<;
template <typename T, typename... ARGS>
std::unique_ptr<T> unique(ARGS&&... args)
{ return std::unique_ptr<T>(new T(std::forward<ARGS>(args)...)); }
template<LatticeType LR>
template<LatticeType LR>
{ filters.add(unique<MeritCombiner::SelectLevel<LR>>(size.maxLevel())); }
template <LatticeType LA, EmbeddingType L, Compress C>
void test(const Storage<LA, L, C>& storage, Dimension dimension)
{
auto weights = unique<LatticeTester::ProductWeights>();
weights->setDefaultWeight(0.7);
CoordUniformFigureOfMerit<Kernel::PAlpha> figure(std::move(weights), 2);
std::cout << "figure of merit: " << figure << std::endl;
/*
// The P_{\alpha,PLR} figure of merit for polynomial lattices
auto weights = unique<LatticeTester::ProductWeights>();
weights->setDefaultWeight(0.7);
CoordUniformFigureOfMerit<Kernel::PAlphaPLR> figure(std::move(weights), 2);
std::cout << "figure of merit: " << figure << std::endl;
*/
auto genSeq = GenSeq::Creator<Coprime>::create(storage.sizeParam());
auto cbc = MeritSeq::cbc<MeritSeq::CoordUniformInnerProd>(storage, figure);
setCombiner(filters, storage.sizeParam());
while (cbc.baseLat().dimension() < dimension) {
Dimension baseDim = cbc.baseLat().dimension();
std::cout << "CBC search for dimension: " << (baseDim + 1) << std::endl;
std::cout << "base lattice: " << std::endl << cbc.baseLat();
std::cout << "base merit value: " << cbc.baseMerit() << std::endl;
auto meritSeq = cbc.meritSeq(baseDim == 0 ? genSeq0 : genSeq);
auto filteredSeq = filters.apply(meritSeq);
auto best = std::min_element(filteredSeq.begin(), filteredSeq.end());
cbc.select(best.base());
std::cout << "BEST LATTICE: " << std::endl << cbc.baseLat() << "Merit value: " << *best << std::endl;
}
}
int main()
{
SET_PATH_TO_LATNETBUILDER_FOR_EXAMPLES();
Dimension dim = 3;
/*
test(Storage<LatticeType::POLYNOMIAL, EmbeddingType::UNILEVEL, Compress::NONE>(PolynomialFromInt(115)), dim);
test(Storage<LatticeType::POLYNOMIAL, EmbeddingType::MULTILEVEL, Compress::NONE>(PolynomialFromInt(115)), dim);
*/
return 0;
}